36 research outputs found

    Comprehensive serial molecular profiling of an “N of 1” exceptional non-responder with metastatic prostate cancer progressing to small cell carcinoma on treatment

    Get PDF
    Abstract Importance Small cell carcinoma/neuroendocrine prostate cancer (NePC) is a lethal, poorly understood prostate cancer (PCa) subtype. Controversy exists about the origin of NePC in this setting. Objective To molecularly profile archived biopsy specimens from a case of early-onset PCa that rapidly progressed to NePC to identify drivers of the aggressive course and mechanisms of NePC origin and progression. Design, setting, and participants A 47-year-old patient presented with metastatic prostatic adenocarcinoma (Gleason score 9). After a 6-month response to androgen deprivation therapy, the patient developed jaundice and liver biopsy revealed exclusively NePC. Targeted next generation sequencing (NGS) from formalin-fixed paraffin-embedded (FFPE)-isolated DNA was performed from the diagnostic prostate biopsy and the liver biopsy at progression. Intervention Androgen deprivation therapy for adenocarcinoma followed by multiagent chemotherapy for NePC. Main outcomes and measures Identification of the mutational landscape in primary adenocarcinoma and NePC liver metastasis. Whether the NePC arose independently or was derived from the primary adenocarcinoma was considered based on mutational profiles. Results A deleterious somatic SMAD4 L535fs variant was present in both prostate and liver specimens; however, a TP53 R282W mutation was exclusively enriched in the liver specimen. Copy number analysis identified concordant, low-level alterations in both specimens, with focal MYCL amplification and homozygous PTEN, RB1, and MAP2K4 losses identified exclusively in the NePC specimen. Integration with published genomic profiles identified MYCL as a recurrently amplified in NePC. Conclusions and relevance NGS of routine biopsy samples from an exceptional non-responder identified SMAD4 as a driver of the aggressive course and supports derivation of NePC from primary adenocarcinoma (transdifferentiation).http://deepblue.lib.umich.edu/bitstream/2027.42/113670/1/13045_2015_Article_204.pd

    Discordant and heterogeneous clinically relevant genomic alterations in circulating tumor cells vs plasma DNA from men with metastatic castration resistant prostate cancer

    Full text link
    Circulating tumor cell (CTC) and cellâ free (cf) DNAâ based genomic alterations are increasingly being used for clinical decisionâ making in oncology. However, the concordance and discordance between paired CTC and cfDNA genomic profiles remain largely unknown. We performed comparative genomic hybridization (CGH) on CTCs and cfDNA, and lowâ pass whole genome sequencing (lpWGS) on cfDNA to characterize genomic alterations (CNA) and tumor content in two independent prospective studies of 93 men with mCRPC treated with enzalutamide/abiraterone, or radiumâ 223. Comprehensive analysis of 69 patient CTCs and 72 cfDNA samples from 93 men with mCRPC, including 64 paired samples, identified common concordant gains in FOXA1, AR, and MYC, and losses in BRCA1, PTEN, and RB1 between CTCs and cfDNA. Concordant PTEN loss and discordant BRCA2 gain were associated with significantly worse outcomes in Epic ARâ V7 negative men with mCRPC treated with abiraterone/enzalutamide. We identified and externally validated CTCâ specific genomic alternations that were discordant in paired cfDNA, even in samples with high tumor content. These CTC/cfDNAâ discordant regions included key genomic regulators of lineage plasticity, osteomimicry, and cellular differentiation, including MYCN gain in CTCs (31%) that was rarely detected in cfDNA. CTC MYCN gain was associated with poor clinical outcomes in ARâ V7 negative men and small cell transformation. In conclusion, we demonstrated concordance of multiple genomic alterations across CTC and cfDNA platforms; however, some genomic alterations displayed substantial discordance between CTC DNA and cfDNA despite the use of identical copy number analysis methods, suggesting tumor heterogeneity and divergent evolution associated with poor clinical outcomes.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/153751/1/gcc22824.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/153751/2/gcc22824_am.pd

    Comparative genomics of primary prostate cancer and paired metastases: insights from 12 molecular case studies

    No full text
    Primary prostate cancer (PCa) can show marked molecular heterogeneity. However, systematic analyses comparing primary PCa and matched metastases in individual patients are lacking. We aimed to address the molecular aspects of metastatic progression while accounting for the heterogeneity of primary PCa. In this pilot study, we collected 12 radical prostatectomy (RP) specimens from men who subsequently developed metastatic castration-resistant prostate cancer (mCRPC). We used histomorphology (Gleason grade, focus size, stage) and immunohistochemistry (IHC) (ERG and p53) to identify independent tumors and/or distinct subclones of primary PCa. We then compared molecular profiles of these primary PCa areas to matched metastatic samples using whole-exome sequencing (WES) and amplicon-based DNA and RNA sequencing. Based on combined pathology and molecular analysis, seven (58%) RP specimens harbored monoclonal and topographically continuous disease, albeit with some degree of intratumor heterogeneity; four (33%) specimens showed true multifocal disease; and one displayed monoclonal disease with discontinuous topography. Early (truncal) events in primary PCa included SPOP p.F133V (one patient), BRAF p.K601E (one patient), and TMPRSS2:ETS rearrangements (eight patients). Activating AR alterations were seen in nine (75%) mCRPC patients, but not in matched primary PCa. Hotspot TP53 mutations, found in metastases from three patients, were readily present in matched primary disease. Alterations in genes encoding epigenetic modifiers were observed in several patients (either shared between primary foci and metastases or in metastatic samples only). WES-based phylogenetic reconstruction and/or clonality scores were consistent with the index focus designated by pathology review in six out of nine (67%) cases. The three instances of discordance pertained to monoclonal, topographically continuous tumors, which would have been considered as unique disease in routine practice. Overall, our results emphasize pathologic and molecular heterogeneity of primary PCa, and suggest that comprehensive IHC-assisted pathology review and genomic analysis are highly concordant in nominating the 'index' primary PCa area

    Comparative genomics of primary prostate cancer and paired metastases: insights from 12 molecular case studies.

    No full text
    Primary prostate cancer (PCa) can show marked molecular heterogeneity. However, systematic analyses comparing primary PCa and matched metastases in individual patients are lacking. We aimed to address the molecular aspects of metastatic progression while accounting for heterogeneity of primary PCa. In this pilot study, we collected 12 radical prostatectomy (RP) specimens from men who subsequently developed metastatic castration-resistant prostate cancer (mCRPC). We used histomorphology (Gleason grade, focus size, stage) and immunohistochemistry (IHC) (ERG and p53) to identify independent tumors and/or distinct subclones of primary PCa. We then compared molecular profiles of these primary PCa areas to matched metastatic samples using whole exome sequencing (WES) and amplicon-based DNA and RNA sequencing. Based on combined pathology and molecular analysis, seven (58%) RP specimens harbored monoclonal and topographically continuous disease, albeit with some degree of intra-tumor heterogeneity; four (33%) specimens showed true multifocal disease; and one displayed monoclonal disease with discontinuous topography. Early (truncal) events in primary PCa included SPOP p.F133V (one patient), BRAF p.K601E (one patient), and TMPRSS2:ETS rearrangements (eight patients). Activating AR alterations were seen in nine (75%) mCRPC patients, but not in matched primary PCa. Hotspot TP53 mutations, found in metastases from three patients, were readily present in matched primary disease. Alterations in genes encoding epigenetic modifiers were observed in several patients (either shared between primary foci and metastases or in metastatic samples only). WES-based phylogenetic reconstruction and/or clonality scores were consistent with the index focus designated by pathology review in six out of nine (67%) cases. The three instances of discordance pertained to monoclonal, topographically continuous tumors, which would have been considered as unique disease in routine practice. Overall, our results emphasize pathologic and molecular heterogeneity of primary PCa, and suggest that comprehensive IHC-assisted pathology review and genomic analysis are highly concordant in nominating the 'index' primary PCa area. This article is protected by copyright. All rights reserved
    corecore